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Abstract
First, the basis and the characteristics of the Czjzek model for the distribution of electric field
gradient (EFG) tensor in disordered solids, some of which are still unnoticed, are depicted. That
model results from the statistical invariance by rotation of the structure of the considered
disordered solid and from the applicability of a central limit theorem to the EFG tensor. These
two conditions, which are physically realistic for a wealth of disordered solids, simplify
tremendously the derivation of the EFG distribution but at the cost of a complete loss of
structural information about the investigated solid. Next, we describe a simple extension of it
which is intended to mimic a well-defined local environment, with given values of the
asymmetry parameter and of the principal component Vzz of the EFG tensor, perturbed by the
disorder of more remote atoms. The effect of disorder is rendered by a Gaussian (Czjzek) noise
with an adjustable weight relative to Vzz . The number of free parameters is limited to three, as
compared to a sole scale factor for the Czjzek model. Its characteristics are described as a
function of the given asymmetry parameter and of the strength of the noise. The aim is to lead
to a practical tool which may help to retrieve, as far as possible, the information about the local
environment perturbed by disorder from hyperfine measurements and notably from NMR
spectra of quadrupolar nuclei. As an example, that extension is applied to some static NMR
spectra of 71Ga in covalent glasses. Calculated static 71Ga NMR lineshapes are shown as a
function of the parameters of the extended model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The distributions of electric field gradients at the nuclei
of a variety of isotopes are very often studied by

4 Author to whom any correspondence should be addressed.

hyperfine techniques, such as nuclear solid state nuclear
magnetic resonance (NMR), nuclear quadrupole resonance
(NQR), perturbed angular correlations (PAC), and Mössbauer
spectroscopy, to gain information on disordered materials,
both crystalline and non-crystalline. Electron paramagnetic
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resonance (EPR), the concepts of which are similar to those of
NMR, is quite naturally added to the previous non-exhaustive
list.

Czjzek et al [1] proposed a model which has played
a seminal role in the analysis of the EFG distribution of
random atomic arrangements. The Czjzek model provides
a joint probability distribution fC(Vzz, η) of the principal
value Vzz of the EFG tensor and of the classical asymmetry
parameter η. The latter is redefined in section 2.1 and
is equally denoted by ηQ in the NMR literature, as done
hereafter when relevant. The density probability fC(Vzz, η)

yields the probability fC(Vzz, η) dVzz dη that Vzz and η range
simultaneously between Vzz and Vzz + dVzz and between η and
η + dη, respectively. The very same EFG distribution was
independently derived by Stöckmann [2] for a cubic system
with a large concentration of vacancies randomly distributed.

As emphasized recently by d’Espinose de Lacaillerie et al
[3], the relation between structural data and the quadrupolar
interaction is obtained in the best situation by ab initio
calculations of the EFG. The situation is however much
more complex when dealing with materials which are neither
perfectly nor almost perfectly ordered. In the presence of
a significant disorder, the quadrupolar interactions reflect the
statistical distribution of the EFG, which require modelling
from the structural disorder at the relevant scale. The latter
task is complex, as it is for modelling almost all physical
properties of such materials, but disorder is fortunately a
source of simplification when the physics which determines
the considered property makes possible the application of a
central limit theorem (CLT). The importance of the Czjzek
model, whose general conditions of validity were discussed
by Le Caër et al [4–7], stems indeed from the fact that it
is an attraction basin of many EFG tensor distributions in
disordered solids. This results from the application of a
CLT [8] to the five-dimensional vector (section 2.1) which is
necessary to define completely a symmetric, zero-trace EFG
tensor whose distinct elements are sums over a large number of
random terms with various physical origins. The central limit
theorem applies when every term of a given sum of random
variables has a reduced importance if considered individually
(see among others [8] for precise and rigorous formulations).
The fact that the Czjzek model results just from the two very
general assumptions discussed below, statistical isotropy [1]
and validity of the conditions of application of the CLT [4, 5],
was not immediately recognized and, for some time, that model
was considered as being a way to test the adequacy of dense
random packing models [9]. By that was more precisely meant
a dense random packing of hard spheres (RDPHS, Bernal
model). The validity of the Czjzek model for a non-relaxed
cubic solid with a high density of vacancies [2], which is a
clear counter-example of the latter conclusion, was ignored for
some years. It is therefore not surprising that the measured
quadrupolar interactions lose all specific information about the
disordered structure from which they originate and provide a
single scale parameter when the Czjzek model holds. The
latter parameter may however be of physical interest for the
characterization of various solids. Although physics seems
to be absent from the Czjzek model, it is worth emphasizing

that theoretical calculations of the EFG are needed to establish
which general conditions on structures and chemical bonding
favour that model.

The Czjzek model is supported by two pillars, as discussed
in detail in [7] (see further section 2.1).

(1) The first is the statistical invariance by rotation of the
structure of the considered disordered solid [1]. That
condition must not be misconceived as the statistical
isotropy of the EFG tensor does not imply any local
structural isotropy of the latter solid.

(2) The second is the aforementioned applicability of the
central limit theorem to the EFG tensor elements [4].
A random EFG tensor whose elements fulfil the two
conditions of validity of the Czjzek model will be named
hereafter a Czjzek tensor.

The most general idea on the structure of amorphous
solids is that they are isotropic on average. The first condition
thus appears rather straightforward. It may however be noticed
that deviations from an overall isotropy were reported to occur
in deformed glasses ( [10–12] and references therein). They
were either studied by x-ray diffraction experiments in metallic
glasses [10] or by molecular dynamics simulations in metallic
glasses [11] and in silica glass [12]. The second condition
is more dependent on the nature of the investigated materials
than is the first one. If the Czjzek model does not hold, more
must be known about the considered materials, their atomic
structure and their electronic structure to obtain a trustworthy
EFG model. Obtaining a general model which differs from the
Czjzek model thus seems hopeless.

A simple extension of the Czjzek model was nevertheless
introduced first in [5] in relation to 57Fe quadrupole splitting
distributions, and then investigated partly in [7]. That model
was intended to mimic the EFG tensor of a well-defined
neighbourhood of a given atomic species perturbed by a
‘random noise’ tensor which reflects the effect of disorder
in more remote atomic shells. The total EFG tensor is then
the sum of a fixed EFG tensor, with a given principal value
Vzz(0) and a given asymmetry parameter η0, and of a Czjzek
tensor whose weight is proportional to a tunable parameter
ε. The evolution of the characteristics of the total tensor was
investigated in [7], more particularly for η0 = 0, as a function
of ε to determine the minimum value of it for which the Czjzek
noise outweighs the constant EFG to a point where the effect
of the latter is essentially hidden. The emphasis in [7] was
then put on large values of the parameter ε. This model is
worth reinvestigating for all values of η0 and, more particularly,
for small to moderate values of ε. It may indeed be of some
interest in NMR, which is a widely used structural tool in
solid state sciences, especially for characterizing disordered or
complex materials. The lineshape of the many nuclei whose
spin is I > 1/2, 7Li, 11B, 23Na, 27Al, 69,71Ga, 133Cs to
name just a few, is dominated by the quadrupolar interaction.
The latter interaction results from the coupling between the
nuclear quadrupole moment Q with the EFG created by
the surrounding electric charges. The NMR lineshapes then
depend on the asymmetry parameter ηQ and on the quadrupolar
frequency, νQ = 3|eQVzz|

2I (2I−1)
where I and Q are respectively the
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nuclear spin and the nuclear quadrupole moment of the ground
state. To account for any NMR spectrum of a quadrupolar
nucleus in a disordered solid thus requires one to rely on some
distribution f (νQ, ηQ), or equivalently on f (Vzz, η). One of
the aims of the present extension of the Czjzek model is thus
to investigate a distribution which might be of some use in
accounting for the actual NMR spectra of disordered solids.

In the following, we shall first recall the characteristics
of the Czjzek model which are needed for a self-contained
description of the extended model and to pose the questions
which are addressed in the present work. Some unpublished
characteristics of the Czjzek distribution of Vzz and η, which
are useful in the present context, shall be given. Then, we
shall characterize the extended Czjzek model as a function of
its parameters with the aim of obtaining results in a convenient
form and of defining a practical method of application of the
model. Finally, we shall exhibit NMR lineshapes to evidence
the influence of ε in the whole range and we shall show how
such a model applies to the 71Ga NMR spectrum of a glass of
the binary system GeS2–Ga2S3.

2. The Czjzek model

For simplicity, almost all probability distributions used in
the present work will be denoted as pC(x), pE(x) for the
univariate distribution of a physical observable x which may
be Vzz, η or � = |Vzz |

√
1 + η2/3 and pC(x, y), pE(x, y) for

the distribution of couples (x, y) of physical quantities, for
instance (Vzz, η) or (�, η). The lower indices C and E refer
respectively to the Czjzek model and to its extension. The use
of a single notation pA( ) for distributions whose functional
forms differ, pA(x) �= pA(y) if x �= y is not really confusing,
as it is the nature of the variable x itself which makes it clear
which distribution pA(x) is being dealt with.

2.1. The basic ingredients

The elements of the EFG tensor V̄ in its general non-diagonal
form are written in lower case (vi j , i, j = x, y, z). If the
principal values of the EFG tensor, denoted in upper case
as Vxx , Vyy, Vzz(Vxx + Vyy + Vzz = 0), are sorted such that
|Vxx | � |Vyy| � |Vzz|, the asymmetry parameter is recalled

to be defined as: 0 � η = Vxx −Vyy

Vzz
� 1.

Considerations about the distribution of the EFG tensor
itself and not only about the distribution of its eigenvalues
(through the bivariate distribution of Vzz and η) are of interest
in disordered solids because additivity of the various physical
contributions holds for the elements of the EFG tensor, but not
for its eigenvalues. The distribution of the EFG tensor cannot
be directly accessed by experiments, but the consequences of
assumptions about it can be. Following Czjzek et al [1], we
define a five-dimensional real vector, U = (U1, U2, . . . , U5),
deduced from the irreducible spherical tensor associated with
any zero-trace symmetric second-rank tensor, as is the EFG
tensor V̄ . Its irreducible components, which transform as
linear combinations of spherical harmonics of degree 2, are
given by: U1 = vzz/2, U2 = vxz/

√
3, U3 = vyz/

√
3, U4 =

vxy/
√

3, U5 = (vxx − vyy)/(2
√

3). The latter tensor can then
be written as

V̄ =
[−U1 + U5

√
3 U4

√
3 U2

√
3

U4

√
3 −U1 − U5

√
3 U3

√
3

U2

√
3 U3

√
3 2U1

]

. (1)

The second invariant of the EFG tensor is thus pro-
portional to the square of the norm, of the vector
U(tr(V̄ 2) = 6‖U‖2 = 3

2 V 2
zz(1 + η2

3 ) = 3
2�2), where tr means

‘trace’. The latter vector is also the addition of physical contri-
butions of various origins and is thus a random vector in a dis-
ordered solid. It is thus equivalent to consider the distribution
of the EFG tensor or the distribution of the vector U , which
will be named the EFG vector. Both will equally be dealt with
in the following. If the considered disordered solid is statisti-
cally invariant by any rotation, then the five components of U

fulfil a number of conditions, the relevant and essential ones
being [7]

{ 〈Uk〉 = 0

〈U j Uk〉 = σ 2δ jk
(k = 1, . . . , 5), (2)

where 〈X〉 denotes the average of the random variable X . The
covariance matrix Λ, whose elements �i j(i, j = 1, . . . , 5) are
〈Ui U j〉 because the means are zero, is proportional to a unit
5 × 5 matrix, Λ = σ 2I5. The Uks are therefore uncorrelated
random components, but in general this does not mean that
they are independent. For a statistically isotropic solid, the
marginal distributions p(Uk), k = 2, . . . , 5 were further
shown to be identical and symmetric [7]. By contrast, the
distribution of p(U1) is in general different from the latter,
being a priori asymmetric with a zero mean (equation (2)) [7].
The most general form of the distribution of U , associated
with a statistically invariant EFG tensor, was shown to be
given by pSI(U) = pSI(‖U‖, det(V̄ )) where det means
determinant [1]. When pSI(U) is a sole function of ‖U‖, then
the distribution of U is spherical in 5D, that is invariant by any
five-dimensional rotation. We notice that a 5D invariance of
the EFG vector distribution implies its invariance in 3D but the
converse is generally untrue.

The distribution of U is multivariate Gaussian in all
cases where the physics that determines the EFG distribution
meets the requirements of the multidimensional central limit
theorem [8]. In that case, none of the random contributions to
the components of the total EFG dominates the others. They
fulfil the so-called uniform smallness condition, which is a
consequence of the general conditions of validity of the CLT.
The two conditions, statistical isotropy and applicability of
the central limit theorem, imply in addition that the Uks are
now independent and identically distributed Gaussian random
variables with a mean zero and a variance σ 2

C [7], because Λ ∝
I5. In the latter case, the Gaussian tensor V̄ will be denoted by
V̄C (the evocative name Gaussian isotropic (GI) will be used
too). The two previous GI conditions then determine a unique
reference random tensor V̄C, but for a scaling factor σC which
is characteristic of the investigated solid. The distribution of
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UC:

pC(UC) = pC(UC1, UC2, . . . , UC5)

= 1

(2πσC)5
exp

(

−
∑5

k=1 U 2
Ck

2σ 2
C

)

= 1

(2πσC)5
exp

(
−‖UC‖2

2σ 2
C

)
(3)

is thus seen to be invariant not only by any rotation in 3D but
more generally by any orthogonal transformation in 5D.

The Czjzek model is a well-defined universal reference
state for both the EFG tensor and the EFG vector distributions.
It holds more generally for any symmetric, zero-trace second-
rank tensor, whose elements are also sums of random physical
contributions, which fulfils the two conditions discussed above.
This is, for instance, the case of the deviatoric atomic level
stress (ALS) tensor. The ALS tensor was defined by Egami
et al ([13, 14] and references therein) for every atom of a
solid. It can be calculated from the knowledge of interatomic
potentials. The elements of the ALS tensor at any atomic
position in a disordered structure are then sums of contributions
from the surroundings of the considered site. An analysis
which parallels that done for the Czjzek model can then be
directly applied to the ALS tensor in a disordered solid, as
shown in [4]. It is worth noticing that the von Mises shear
stress [13, 14] and the quadrupole splitting, measured for
instance in 57Fe and 119Sn Mössbauer spectroscopy, which
are proportional to the norm of the ALS tensor and of the
EFG tensor respectively, then both have the same distribution
(p(x) ∝ x4 exp(−a2x2), section 2.2). The irreducible
elements of the EFG tensor are equivalent to the second-order
crystal field terms in the Hamiltonian which describes the
interaction between local electronic states and the potential of
surrounding charges [9, 15]. Properties which are sensitive to
crystal fields were thus calculated using the functional form
of the Czjzek model [15]. Significant deviations from the
Czjzek model were reported for rare-earth amorphous alloys,
from which it was concluded that the distribution of local
symmetries is not consistent with RDPHS’s [15].

Finally, it is worth mentioning that the random EFG
vector, UC, is the vector that has the largest Shannon entropy
(named differential entropy for continuous random variables),
S[p] = ∫

R5 p(U) ln(p(U)) dU , over all random vectors with
the sole constraints of a zero mean vector 〈U 〉 = 0 and of
a given covariance matrix, Λ = σ 2I5, which hold here as
a consequence of statistical isotropy (equation (2)). Further,
using spherical coordinates, the Czjzek distribution is easily
shown to be the maximum entropy distribution among all
spherical distributions which have a density pS(‖U‖) with the
constraint that 〈‖U‖2〉 = 5σ 2. The most general isotropic
distribution, with a density given by pSI(‖U‖, det(V̄ )),
however, not only obeys the two constraints given by
equation (2) but supplementary constraints [1, 7]. These
additional constraints are evidently satisfied by the spherical
distributions considered above. Following Jaynes [16], a
maximum entropy distribution is ‘maximally noncommittal’,
meaning as uniform as it can be without violating the given
constraints. The previous discussion then suggests that the

additional constraints, if they are nonredundant with those
given by equation (2), decrease the entropy of an isotropic
distribution with respect to that of the Czjzek distribution.
Consistently, the CLT can be viewed as a ‘maximum entropy’
result [17].

2.2. Some characteristics of the distribution fC (Vzz, η)

When an EFG tensor reduces to a Czjzek tensor, the
observed distributions have universal functional forms and
detailed structural information cannot be gained from them as
discussed in section 1. To establish a direct link between the
multivariate Gaussian distribution pC(UC) (equation (3)) and
the distributions of the eigenvalues of V̄C, we have chosen σC

as the scaling factor and not σ(=2σC) as done in [7]. The
bivariate distribution fC(Vzz, η) is then [1, 7]

fC(Vzz, η) = η

(
1 − η2

9

)
V 4

zz

32σ 5
C

√
2π

× exp

(
− V 2

zz

8σ 2
C

(
1 + η2

3

))
(4)

which yields the distribution of η [1]:

pC(η) =
3η
(

1 − η2

9

)

(
1 + η2

3

)5/2 (5)

whose average value and standard-deviation are respectively,
〈η〉C = 2

√
3 − (3

√
3/2) ln 3 = 0.609 823 . . . and ση,C =

0.242 685 . . .. As the frequency νQ is proportional to |Vzz|, the
sign of Vzz is irrelevant to the present work. We restrict then
the domain of integration of fC(Vzz, η) and therefore below we
use pC(Vzz, η) = 2 fC(Vzz, η)(Vzz � 0, 0 � η � 1).

Equation (4) shows that Vzz and η are not independent but
that they are weakly correlated. The only term which is respon-
sible for a correlation between them is indeed the (1 + η2/3)

factor in the exponential, which ranges between 1 and
≈1.1547. This is better seen by calculating the conditional dis-
tributions pC(v|η1 � η � η2) and pC(η|v1 � v � v2), where
pC(x |y1 � y � y2) is the density probability of x knowing
that y1 � y � y2 (y2 − y1 � dy). The conditional dis-
tribution pC(v|η1 � η � η2) varies as ∝v4 when v → 0 for
any pair such that 0 � η1 < η2 � 1 (unpublished results).
The correlation coefficient between η and |Vzz | is calculated
to be ≈−0.1241. By contrast, η and � = |Vzz |

√
1 + η2/3,

which is proportional to the norm of the EFG tensor

(‖VC‖ =
√

tr V 2
C = (

∑
i, j=x,y,z v2

Ci j )
1/2 = �

√
3/2), are inde-

pendent random variables. The latter quantity is proportional
to the quadrupole splitting that is measured for instance by 57Fe
and 119Sn Mössbauer spectroscopy in the non-magnetic state of
solids. We obtain from pC(Vzz, η) that

pC(�, η) = 3η(1 − η2/9)

(1 + η2/3)5/2

�4

48σ 5
C

√
2π

exp

(
− �2

8σ 2
C

)

= pC(η)pC(�). (6)

Equation (6) justifies the use of polar coordinates to plot
the contour maps of the Czjzek distribution (see [1] and
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figures 2 and 9 of [7]). The functional form of the quadrupole
splitting distribution often used in Mössbauer spectroscopy
is consistently taken to be pC(�). The distribution pC(�)

is obtained in a different way just by noticing that �
2σC

=
√
∑5

k=1
U2

Ck

σ 2
C

has, by definition, a chi distribution with five

degrees of freedom [8, 18].
To describe simply how η can be independent of �, we

express UC as UC = ‖UC‖uC = (�/2)uC, where uC is a
5D unit vector. Equation (3) shows that the distribution of
the Gaussian vector UC is spherical, as it depends only on its
norm. Then, the distribution of the unit vector uC = UC/‖UC‖
is isotropic, that is, its tip spans uniformly the surface of the
5D unit sphere (see for instance section V.4 of [18]). We
then consider an arbitrary unit vector that we fix, uC( f ), and
the tensor V̄ ( f ) = V̄ (uC( f )) obtained from it by applying
equation (1) as well as its principal values. The elements of
the EFG tensor calculated from UC( f ) = (�/2)uC( f ), where
� has now an arbitrary value, and its principal values are then
those of V̄ ( f ) multiplied by �/2. This leaves η f = η(uC( f ))

unchanged, as it is a ratio of principal values. Selecting a
vector whose orientation is kept constant for any radius thus
yields a single value of η f for any �. The distribution of η

of the Czjzek model is thus fully determined by the uniform
distribution on the surface of a 5D sphere independently of its
radius ∝�. Actually, the latter distribution is still obtained
if the unit vector is uniformly distributed only on one eighth
of the surface. More generally, an EFG vector distribution,
associated with an EFG tensor statistically isotropic in 3D, for
which U = ‖U‖u = (�/2)u, may give rise to a distribution
p(�, η) with independent η and � as soon as the distribution
of u is independent of �. However, the resulting distribution
of η has no reason to coincide with pC(η) (equation (5)) for
any anisotropic distribution of the 5D unit vector u.

Another way of expressing the independence of η and �

is through a so-called stochastic representation of U , U
d= Ru,

where A
d= B means that A and B are identically distributed

and where the random variable R and the 5D random vector
u are independent. Generating a uniformly distributed 5D
unit vector uC by Monte Carlo simulation, and using its
components to construct a tensor, yields pC(η) (equation (5))
as expected. The distribution pC(η) is then obtained for all
distributions of the form p(�, η) ∝ pC(η)G(�2) [7]. As
observed experimentally, the distribution pC(η) is robust and
holds in a variety of conditions which deviate from those of
the Czjzek model (also see section 4). The appendix describes
a different approach to the EFG tensor and to pC(η) based on
a Maxwell multipole [19, 20].

Further characteristics of the Czjzek model which are
relevant to the present work are given below. The distribution
of v = |Vzz| is [4]

pC(v) = 1

σC

√
2

π

[(
3v2

8σ 2
C

− 1

)
exp

(
− v2

8σ 2
C

)

+
(

1 − v2

3σ 2
C

)
exp

(
− v2

6σ 2
C

)]
v > 0 (7)

with a maximum at 3.734 206 82 . . . σC, an unpublished value
of the ratio of the full width at half maximum to the position

of the maximum of 0.831 254 2367 . . . and a variation ∝v4

when v → 0. The first two moments of v are 〈|Vzz |〉 =
5σC

√
2/π and 〈|Vzz |2〉 = σ 2

C(28 − 6
√

3), from which the

ratio σ|Vzz|/〈|Vzz |〉 is deduced to be
√

14π − 3π
√

3 − 25/5 =
0.326 07 . . . [4], where σ|Vzz| = √〈|Vzz |2〉 − 〈|Vzz |〉2.

2.3. The Czjzek model C(n)

A model, named here C(n), was proposed by Czjzek [21]
to generalize the distribution of � found for the previous
Czjzek model (n = 5) to distributions of the form pC(n)(�) =

�n−1

2(n−2)/2σ n
(n/2)
exp(− �2

2σ 2 ), (n = 1, . . . , 4). That extension was

intended to account for distributions of 57Fe quadrupole split-
ting of the type were reported to occur in ionic glasses and in
metallic glasses. For that purpose, Czjzek made another as-
sumption on the distribution of the EFG tensor. He assumed
that the five components of the vector U (section 2.1) are not
independent and that they are linear functions of n(<5) Gaus-
sian random variables with a zero mean [21]. The main conse-
quence of that (ad hoc) assumption is that the distribution of the
EFG tensor is no longer invariant by rotation, a fact which went
largely unnoticed [7]. Indeed, the covariance matrix Λ is now
singular by construction while it must be proportional to a unit
5 × 5 matrix in the case of statistical isotropy (equation (2)). It
is easy to exhibit a statistically isotropic distribution of the EFG
vector which yields pC(n)(�). By the results of section 2.1, the
distribution of U cannot be multivariate Gaussian (n < 5) be-
cause the unique multivariate Gaussian distribution consistent
with isotropy is that of Czjzek’s model with n = 5. The pro-
posed EFG vector distribution is simply given by pC(n)(U) ∝
(
∑5

k=1 U 2
k )(n−5)/2 exp(−∑5

k=1 U 2
k /2σ 2). The common distri-

bution of the Uks is given by pn(Uk) ∝ exp(−U 2
k /2σ 2) ×∫∞

0 x exp(−x/(2σ 2)) dx/(x + U 2
k )(5−n)/2. The associated dis-

tribution pC(n)(|Vzz|, η) is ∝η(1 − η2/9)(1 + η2/3)(n−5)/2 ×
|Vzz|n−1 exp(−V 2

zz(1 + η2/3)/8σ 2) and the distribution of the
asymmetry parameter is still pC(η) (equation (5)) because the
distribution pC(n)(U) is spherical in 5D (section 2.2).

An empirical bivariate distribution, inspired both by
pC(|Vzz |, η) and by pC(n)(�) and for that reason still

named Czjzek’s model, pn(|Vzz|, η) ∝ η(1 − η2

9 ) ×
|Vzz|n−1 exp(− V 2

zz

2σ 2 (1 + η2

3 )), was used to interpret EPR or
NMR spectra (see for instance [22–25]). If the latter model
is intended to be associated with a statistically isotropic
disordered solid then, as discussed above, the distribution of
U cannot be multivariate Gaussian and the distribution of the
associated EFG vector cannot fulfil the basic assumption of the
Czjzek’s extension with n < 5. The name that model bears
then all the more confuses that the pn(|Vzz|, η) distribution
may have practical interest [22–25]. The distribution of
η which is associated to pn(|Vzz|, η) is easily found to be
pn(η) ∝ η(1 − η2/9)/(1 + η2/3)n/2. A model, which
gives rise to pn(|Vzz |, η), still remains to be displayed and
constructed on a reasoned basis.

3. A simple extension of the Czjzek model

The Czjzek model is, so to speak, a kind of ‘black hole’ out
of which no information about the specific structural features

5
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of the investigated solid and about the physical origins of
the EFG can come. The extended model discussed here is
then motivated by the recovery of the structural information,
contained in the EFG about short-range order in a disordered
solid, eclipsed partly by a Gaussian noise which tends to absorb
that information. The model is intended to mimic the EFG
contribution of a well-defined neighbourhood of a given atomic
species modified by the effect of more remote atomic shells.
Actually, it would suffice that some close neighbourhood gives
rise to an EFG tensor with fixed values of η = η0 and of
Vzz = Vzz(0). The proposed extension of the Czjzek model
then reads

V̄E(ε) = V̄ (0) + ρ(ε)V̄C (ε, ρ(ε) > 0). (8)

For the sake of simplicity, the explicit dependence of ρ

on ε will be dropped hereafter. One aim is to provide
a sufficiently realistic and possibly practical model while
keeping the number of free parameters as small as possible.
In equation (8), the EFG tensor V̄E(ε) is the sum of two parts,
the first one being a fixed diagonal tensor V̄ (0):

V̄ (0) =
[ Vzz(0)(η0 − 1)/2 0 0

0 −Vzz(0)(η0 + 1)/2 0
0 0 Vzz(0)

]

(9)
which is associated with a vector U(0) = (Vzz(0)/2, 0, 0, 0,

η0Vzz(0)/2
√

3) and characterized by an asymmetry parameter
η0 and a principal value Vzz(0). The second part is a random
‘noise ‘tensor V̄RN, taken to be a Czjzek tensor, namely
V̄RN = ρV̄C, with a ‘weight’ ρ proportional to ε defined
below by equation (10). The tensor V̄C is obtained from
equation (1), from a vector UC = (UC1, UC2, . . . , UC5), whose
five components are identically and independently distributed
Gaussian variables with 〈UCk〉 = 0 and a variance chosen here
to be σ 2

C = 〈U 2
Ck〉 = 1 (k = 1, . . . , 5) (equation (3)). That

simple choice reduces the number of adjustable parameters to
three, Vzz(0), ε and η0.

3.1. Statistical isotropy

As V̄RN is statistically invariant by any rotation, it is possible
to chose the frame of reference in which V̄ (0) is set to be
diagonal without loss of generality. The latter choice is indeed
not inconsistent with the possible existence of an amorphous
solid, statistically invariant by rotation, whose local EFG
distribution would be given by equation (8). Let us consider
the example of an amorphous solid in which a given atomic
species has a well-defined first coordination shell (to within
small deformations) while atomic positions of more remote
atoms fluctuate. An example of an amorphous structure, which
might be described in that way, is that of GeSe4, obtained
by molecular dynamics, which is shown in figure 1 of [26]
although its EFG distribution is not claimed to agree with
equation (8) (see further section 5). This amorphous solid is
isotropic on average, from the point of view of the selected
atomic species probed by hyperfine techniques, if the tips of
unit vectors of a local frame of reference of the ‘cluster’ formed
by the central atom and its neighbours span uniformly a unit
sphere. In other words, it would suffice to rotate uniformly

the frame of reference of the local EFG tensor to obtain the
actual EFG tensor distribution of the whole amorphous solid
in a laboratory reference frame, fixed for all atoms whose
EFG is studied. The latter EFG distribution is not explicitly
given here, but it cannot be accessed experimentally. In any
case, the distribution of that tensor cannot be multivariate
Gaussian because, in that case, statistical isotropy would lead
unavoidably to Czjek’s model (sections 2.1 and 2.3). Only
quantities related to the distribution of the principal values can
be measured and are considered here. The relevant physics
is contained in the ensemble of configurations described by
V̄RN in the frame of reference of the fixed part V̄ (0), that is
in the frame of reference of a local ‘cluster’. Rotating the
latter frame uniformly in all directions would be useless, as it
would not change the distribution pE(Vzz, η) derived directly
from equation (8). That operation would be of interest only
in the case where a structural model provides the EFG tensor
distribution, which might then be compared to that of the
extended model. The appendix provides a way to obtain the
EFG tensor distribution from Monte Carlo simulations.

The previous arguments on statistical isotropy might apply
to the extension of Czjzek’s model, C(n) [21], discussed in
section 2.3 with the restricting condition that the correlated
Gaussian components of U are now local ones and not global
ones. The distribution pC(n)(�) would be recovered by
hypothesis but the associated distribution of η has no reason
to conform with the unique distribution pn(η) associated
to a given n (section 2.3). The distribution of η would
depend instead on the covariance structure chosen for the
Uks (k = 1, . . . , 5), which is a key ingredient of such a model
(see p 10734 of [7]).

3.2. The explicit total EFG tensor

The proposed extension might have been simply phrased as
‘two components of the EFG vector, U1 and U5, of the Czjzek
model are given non-zero means’. The formulation given by
equation (8) was chosen here to make more clear physical and
structural interpretations of it. If, for a given value of η0, Vzz(0)

is multiplied by α, then all elements of V̄ (0) are multiplied

by α. The norm M0 =
√

tr V̄ 2(0) =
√

3
2 |Vzz(0)|

√
1 + η2

0/3
and thus ρ (equation (10)) are then both multiplied by α.
The tensor V̄E(ε) becomes then αV̄E(ε) while the associated
asymmetry parameter remains the same: Vzz(0) is just a
scaling factor which is taken as equal to 1 in the Monte Carlo
simulations of section 4. The mean second invariant of V̄C,
M2

C = 〈tr V̄ 2
C 〉, is then easily found from equation (2) to be

M2
C = 〈6∑5

k=1 U 2
Ck〉 = 30. The perturbation ε is defined to be

the ratio of MRN, defined by M2
RN = 〈tr V̄ 2

RN〉 = ρ2 M2
C, to the

norm of V̄ (0), M0 =
√

tr V̄ 2(0) =
√

3
2 |Vzz(0)|

√
1 + η2

0/3.
The weight ρ is then

ε = MRN

M0
= ρ

√
30

M0
⇒ ρ = M0ε√

30
. (10)

The total tensor can then be written as

V̄E(ε) =
[ VE11 ρUC4

√
3 ρUC2

√
3

ρUC4

√
3 VE22 ρUC3

√
3

ρUC2

√
3 ρUC3

√
3 VE33

]

(11)

6
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with:

VE11 = −ρUC1 + ρ
√

3UC5 + Vzz(0)(η0 − 1)/2

VE22 = −ρUC1 − ρ
√

3UC5 − Vzz(0)(η0 + 1)/2

VE33 = 2ρUC1 + Vzz(0).

The random components UEk (k = 1, . . . , 5) of the vector
UE = U(0)+ρUC associated with V̄E(ε) are then independent
Gaussian random variables with variances ρ2 and means µ =
〈U(0)〉.
3.3. The distribution of the norm of the sum tensor

We derive in this section the distribution of the norm of
V̄E(ε) and we describe exact characteristics of it which are of
practical interest for the extended model (section 4.1). The
mean of the square of the norm of V̄E(ε) is

M2
ε = 〈tr V̄ 2

E (ε)〉 = M2
0 (1 + ε2). (12)

The ratio M2
RN

M2
ε

is then simply ε2

1+ε2 . The distribution of

t = tr V̄ 2
E (ε)/6ρ2 is that of the sum of the squares of five

independent Gaussian variables with unit variances and non-
zero means. The distribution of y = √

t is then a non-central
chi distribution with five degrees of freedom [27] and a non-
centrality parameter λ2 which is calculated from the means μk

and the variances ρ2 of the UEks as

λ2 = 1

ρ2

5∑

k=1

μ2
k = V 2

zz(0)(1 + η2
0/3)

4ρ2
= 5

ε2
. (13)

The density probability of z = ‖V̄E(ε)‖ =
√

tr(V̄ 2
E (ε)) is

finally deduced from that classical distribution to be

p(z) =
√

2

π

z

λM2
0

exp

(
−λ2

2

(
1 + z2

M2
0

))

×
{

λ2z

M0
cosh

(
λ2z

M0

)
− sinh

(
λ2z

M0

)}
z > 0. (14)

The functional form given by equation (14) is that which would
be observed by Mössbauer spectroscopy for the quadrupole
splitting distribution of a disordered solid modelled by
equation (8) in a non-magnetic state. Equation (14) still holds,
with the appropriate λ (equation (13)), when all components of
UE, and not only UE1 and UE5, have non-zero means. The mean

〈z〉 = 〈|Vzz |
√

1 + η2/3〉 and the ratio r�(ε) = σ (|Vzz|
√

1+η2/3)

〈z〉 ,

with σ 2(|Vzz |
√

1 + η2/3) = 〈(|Vzz |
√

1 + η2/3 − 〈z〉)2〉, are
finally given by

〈z〉 = M0τ (ε)

τ (ε) = 1

25

{√
10

π
ε(5 + ε2) exp

(
− 5

2ε2

)

+ (25 + 10ε2 − ε4) erf

(
1

ε

√
5

2

)}

r�(ε) =
√

1 + ε2

τ (ε)2
− 1,

(15)

where erf(x) is the error function (erf(x) = 2√
π

∫ x
0 exp(−t2)

dt). When ε → 0, the four first terms of the expansion of

τ (ε) are 1 + 2ε2

15 − ε4

25 + 8
125

√
2

5π
ε7. The asymptotic value

of r�(ε) is that of the Czjzek model, r�(∞) =
√

45π
128 − 1 =

0.323 212 . . .. The mean norm of V̄E(ε) is the product of the
norm of the fixed tensor V̄ (0) by a function of ε. Thus, the
ratio r�(ε) is solely determined by ε and is independent of η0.

3.4. The bivariate distribution fE(Vzz, η)

For simplicity, the dependence of fE on ε and η0 is implicit
in the notation. The calculation of the bivariate distribution
fE(Vzz, η) is much more involved than in the Czjzek case and
a simple closed form expression like that of equation (4) has
not been found. The method of appendix C of [7], starts
with the distribution of UE as obtained from the sum tensor
(equations (8)). It gives

p(UE) = 1

(2πρ2)5/2
exp

(
− M2

0

12ρ2

)
exp

(
−
∑5

k=1 U 2
Ek

2ρ2

)

× exp

( �UE · �μ
ρ2

)

. (16)

To calculate the bivariate distribution fE(Vzz, η), it is
necessary to diagonalize V̄E(ε), that is to change the set of
random variables from UE to (Vzz, η, α, β, γ ), where (α, β, γ )

are Euler angles (0 � α < 2π, 0 � β < π, 0 � γ < 2π).
First, this introduces the Jacobian of the transformation
∝ sin(β)V 4

zzη(1 − η2

9 ). Then, the components μ1 and μ5

must be expressed in a new frame of reference in which
the sum tensor is diagonal (UE1 = Vzz/2, UE2 =
UE3 = UE4 = 0, UE5 = ηVzz/2

√
3). The distribution

pE(D) which is obtained in that way, where D =
(Vzz, η, t = 2α, u = cos β, v = 2γ ), needs to be integrated
(0 � t � 2π,−1 � u � 1, 0 � v � 2π) to yield fE(Vzz, η).
The latter step seems however intractable. The case η0 = 0
is somewhat simpler and reduces to [7]

fE(Vzz, η) ∝ η

(
1 − η2

9

)
V 4

zz

× exp

(
− (V 2

zz(0) + V 2
zz(1 + η2/3))

8ρ2

)

×
∫ 1

0
exp(�(3u2 − 1))I0(η|�|(1 − u2)) du, (17)

where I0(x) is a modified Bessel function of the first
kind and � = Vzz Vzz(0)/8ρ2. Equation (17) yields the
expected equation (4) for Vzz(0) = 0 and ρ = σC/2
(the factor 1/2 comes from the specific choice of the V̄C

tensor in equation (8)). As the equation which expresses
fE(Vzz, η) is difficult to handle, we resorted to Monte Carlo
simulations of equation (8), as described in section 4, to get
the overall evolution of both fE(Vzz, η) and pE(Vzz, η) =
2 fE(Vzz, η)(Vzz � 0, 0 � η � 1) as a function of η0 and ε

(figures 12–17 of section 4 for η0 = 0.3). The random
variables Vzz and η are dependent as they are for the Czjzek
model.

7
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Table 1. Comparison of simulated (108 tensors) and theoretical
means and standard-deviations for the Czjzek model with σC = 1.

Means and
standard-deviations Simulated values Theoretical values

〈η〉C 0.609 81 0.609 823 . . .
ση,C 0.242 69 0.242 685 . . .
〈|Vzz |〉C 3.989 42 3.989 422 . . .
σ|Vzz |,C 1.300 81 1.300 846 . . .

3.5. Small perturbations

Using perturbation theory, for instance lemma 2.1 of [28], the
principal values of V̄E(ε) (equation (8)), which is a diagonal
tensor V̄ (0), whose principal values are all assumed to be
different (η0 �= 0), perturbed by a symmetric tensor ρV̄C are
just the diagonal elements of the tensor V̄E(ε) from which we
write

vxx (ε) − vyy(ε) = η0Vzz(0) + 2ρ
√

3Uc5 + o(ε)

vzz(ε) = Vzz(0) − 2ρUc1 + o(ε),
(18)

where the unsorted principal values are denoted by lower case
symbols. The asymmetry parameter expanded for very small
values of ρ/Vzz(0) gives

η(ε) ≈ η0 + 2ρ

Vzz(0)
(
√

3UC5 + η0UC1) + O(ρ2). (19)

The distribution of η(ε) is then Gaussian with a mean η0

and a standard-deviation ε

√
3
5 (1 + η2

0
3 ). The latter conclusions

actually hold only when η0 ranges between ∼0.2 and ∼0.8
with ε � ∼0.04–0.05. We will show in the next section that the
distribution of η is indeed Gaussian in a broad range of η0 when
ε is small (figure 7). The broadening, which increases when
η0 increases, would depend identically on η0 when choosing

|Vzz(0)|
√

(1 + η2
0/3) = 1 instead of |Vzz(0)| = 1. It is

clearly seen in figure 7 for ε = 0.05. When η0 = 0, a
small perturbation on the EFG tensor only slightly changes
the magnitudes of the principal components but it suffices to
change significantly the asymmetry parameter, because the
latter is a ratio. The consequence is a zero probability for
η = 0, even for very small values of ε, a result which holds
for any η0 (section 4.2).

4. Monte Carlo simulations

The distributions of all parameters were obtained with
high precision in the whole range of η0 and ε by direct
Monte Carlo simulations of equation (8) with a Fortran
code running on a standard laptop computer. Gaussian
random variables were generated by the classical Box–
Müller method [18]. For that purpose, two independent
random numbers, x1 and x2, uniformly distributed between
0 and 1, are first generated. Then, the following
variables, y1 = σ1

√−2 ln(x1) sin(2πx2) + m1 and y2 =
σ2

√−2 ln(x1) cos(2πx2) + m2 are two independent Gaussian
variables with standard-deviations σ1 and σ2 and means m1

Figure 1. Distribution pE(|Vzz |) of the absolute value of Vzz for
η0 = 0.5 and ε = 0.64 (solid line = Gaussian).

Figure 2. Variation with ε of the ratio rη0(ε) = σ(|Vzz |)/〈|Vzz |〉.

and m2 respectively. The considered distributions and their
moments were calculated from N = 25 × 106 up to N = 108

simulated tensors. The value of Vzz(0) was set to 1 without
loss of generality. Another choice might have been to set

Vzz(0)

√
1 + η2

0/3 = 1. A direct simulation of the Czjzek

model with σC = 1 yields the simulated values (N = 108)
given in table 1. They are in excellent agreement with the
theoretical values, with absolute values of deviations being
typically less than 10−4.

4.1. The distribution pE(v)

The distribution pE(v) of the absolute value v of Vzz is very
well approximated by a Gaussian in the whole range of η0 and
of ε investigated here (figure 1). To characterize it, figure 2
shows the ratio rη0 (ε) of the standard-deviation σ|Vzz |,E =√

〈|Vzz |2〉E − 〈|Vzz |〉2
E to the average 〈|Vzz |〉E as a function of ε

for 0 � η0 � 1. The ratio r�(ε) (equations (15)), independent
of η0, and the ratio rη0(ε) would be strictly equal if Vzz and
η were independent. It is thus not surprising to find that
rη0(ε) is only weakly dependent on η0. Plots of r�(ε) and
of rη0(ε) indeed show that they actually differ by just a little.
The complicated expression of r�(ε) (equations (15)) makes
it obvious that it is hopeless to guess its exact expression or

8
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Figure 3. Variation with ε of the ratio 
η0 (ε) = 
(|Vzz |)/|Vzz |m .

Figure 4. Variation with ε of the mean asymmetry parameter 〈η〉E

for a given value of η0, which increases by steps of 0.1 from 0 to 1
from bottom to top.

that of rη0(ε) from Monte Carlo results. We must then rely
on a good quality approximation to describe the latter ratio.
The solid line in figure 2 interpolates between the values of
the average ratio r̄(ε) = ∑10

k=0 rη0=0.1k(ε)/11. Neglecting the
small dispersion of rη0(ε) with η0, we summarize the results of
figure 2 by a single good quality approximation:

rη0(ε) = r(ε) = 0.326 07(1 − exp(−2.097ε1.151)), (20)

where the constant 0.326 07 is that of Czjzek’s model,
r(∞) (section 2). A fit of the exact r�(ε), given by
equations (15), by a form similar to that of equation (20)
gives r�app(ε) = 0.323 212(1 − exp(−2.056 36ε1.156 81)) with
|r�(ε) − r�app(ε)| < 2.5 × 10−3 for any ε. It strengthens the
confidence in the approximate expressions used here. A simple
way to obtain an approximate value of |Vzz(0)|, when 〈|Vzz |〉
and ε have been determined from experiment and when a value
of η0 has been selected, is just to write from equations (15) that

|Vzz(0)| ≈ 〈|Vzz |〉
√

1 + 〈η〉2/3/[τ (ε)

√
1 + η2

0/3].
For practical purposes, the ratio 
η0(ε) of the full width

at half maximum (FWHM) of the probability density pE(v) to
the position of its maximum vmax was similarly characterized
(figure 3). Figure 3 shows again that 
η0(ε) is almost
independent of η0, as expected from the similar behaviour
of rη0(ε). The dispersion of the ratio around the mean ratio

Figure 5. Variation with ε of the standard-deviation ση,E for a given
value of η0, which increases by steps of 0.1 from 0 to 1, as indicated
by arrows (solid lines from 0 to 0.5, dotted lines from 0.6 to 1).


̄(ε) = ∑10
k=0 
η0=0.1k(ε)/11 is larger for 
η0(ε) than it is

for rη0(ε), in particular for large values of ε. The relevant
dispersion is that of figure 2, as rη0 (ε) is calculated directly
from the whole set of simulated values while 
η0 (ε) is less
precisely evaluated from the maxima and the FWHM’s of
histograms of pEC(v) built from the simulated values. Again,
all the previous results are nicely represented by the relation:


η0(ε) = 
(ε) = 0.831 25(1 − exp(−1.862ε1.143)), (21)

where the unpublished value for Czjzek’s model is 
(∞) =
0.831 25 . . . (section 2.2). For ε � 0.4, 
(ε) is fairly well
approximated by ε. A Gaussian shape with a maximum
at the same position as that of the Czjzek distribution
pC(v) (equation (7)), namely 3.734 206 82 . . . for σC = 1
(section 2), and with the same standard-deviation as that
of pC(v), σ|Vzz| = 1.300 846 . . ., would have a ratio 
G

of 0.820 324, close to 0.831 25. The latter result is fully
consistent with the approximate Gaussian shape of pE(v)

mentioned above (figure 1). Detailed tables giving the values
of the ratios rη0(ε) and 
η0(ε) and those of the average, 〈η〉E

(figure 4) and of the standard-deviation ση,E =
√

〈η2〉E − 〈η〉2
E

(figure 5), for η0 = 0.1k (k = 0, 1, . . . , 10) and for ε =
0.05m (m = 1, 2, . . . , 34), are available on request (GLC).
For completeness, we show in figure 6 the variation with ε

of the fraction of nuclei whose Vzz is of the same sign as
Vzz(0), which may be of interest for Mössbauer spectroscopy
in applied magnetic fields. That fraction shows a rather slow
overall decrease towards its limiting value of 0.5 (figure 6).

4.2. The distribution pE(η) and its approximation pEA(η)

The mean asymmetry parameter 〈η〉E and the standard-
deviation ση,E are shown in figures 4 and 5 as a function
of ε for fixed values of η0. Both characteristics tend rather
rapidly to the corresponding values of the Czjzek model (ε →
∞). The values reached at ε = 1 are already close to their
asymptotic values. The distribution pE(η), which would be
deduced from equations (18), is obtained here from numerical
simulations. For small enough ε, and for η0 not too close
to 0 or to 1, the distribution pE(η) is essentially a Gaussian
(figure 7), fully determined by 〈η〉E and by ση,E (figures 4

9
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Figure 6. Variation with ε of the probability that Vzz has the same
sign as Vzz(0) (chosen here as positive) for a given value of η0, which
increases by steps of 0.1 from 0 to 0.9, as indicated by the arrow.

Figure 7. Distributions pE(η) of the asymmetry parameter for
ε = 0.05 and η0 = 0.1, 0.3, 0.5, 0.7, 0.9.

and 5). For small values of ε, both pE(η) and pE(|Vzz |) are
then Gaussians. Rather small perturbations of a well-defined
neighbourhood by a Czjzek noise thus provide examples of
the simultaneous occurrence of Gaussian distributions of η and
|Vzz|, an assumption (empirical in many cases) which was and
is often used to account for NMR lineshapes (section 5). The
distributions spread out progressively in the full range of η

when ε increases (figures 7–11). This spreading is constrained
by the fact that pE(0) = 0 for any η0 (figures 7–11). This
is due to the basic similarity between the zero probability of
finding an EFG with η = 0, and the level-repulsion found
in random-matrix theory, as both originate from geometrical
correlations due to the Jacobian (section 3.4 and [7]). That
constraint produces an overall asymmetry of the distribution
pE(η), as it exhibits a rather rapidly increasing contribution
around η = 1. That asymmetry is the weakest for central
values of η0 and for small values of ε (figure 7).

The distribution pE(η) is observed to be very well
approximated by the distribution pEA(η), given below for the
whole range of variation of η0 and of ε (figures 7–11):

0 � η � 1

pEA(η) = βk((1+α)/β)



(

1+α
β

) [ηα exp(−kηβ) + (2 − η)α

× exp(−k(2 − η)β)]. (22)

Figure 8. Distributions pE(η) of the asymmetry parameter for
ε = 0.20 and η0 = 0.1, 0.3, 0.5, 0.7, 0.9 (empty and solid symbols)
and their approximations (solid lines) by pEA(η) (equation (22)).

Figure 9. Distributions pE(η) of the asymmetry parameter for
ε = 0.35 and η0 = 0.1, 0.3, 0.5, 0.7, 0.9 (empty and solid symbols)
and their approximations (solid lines) by pEA(η) (equation (22)).

Figure 10. Distributions pE(η) of the asymmetry parameter for
ε = 0.50 and η0 = 0.1, 0.3, 0.5, 0.7, 0.9 (empty and solid symbols)
and their approximations (solid lines) by pEA(η) (equation (22)).

The various terms were chosen as follows: the ηα term
ensures that pEA(0) = 0 for any η0 and ε(>0), the exponential
term yields a Gaussian shape for ε → 0, while the second
term gives the correct behaviour for η ∼ 1 together with a
negligible contribution at η = 0. The three parameters k, α

and β were determined and are tabulated as a function of η0

and ε (table 2). The probability density of a generalized gamma
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Figure 11. Distributions pE(η) of the asymmetry parameter for
ε = 0.65 and η0 = 0.1, 0.3, 0.5, 0.7, 0.9 (empty and solid symbols)
and their approximations (solid lines) by pEA(η) (equations (22)).

distribution [29] is written as

p(x) = βk(1+α)/β


((1 + α)/β)
xα exp(−kxβ) x > 0 (23)

where 
(x) is the Euler gamma function (
(x) =∫∞
0 yx−1e−y dy). Its moments are

〈xn〉 = 
((1 + n + α)/β)

kn/β
((1 + α)/β)
. (24)

The normalizing coefficient of equations (22), which
comes from equation (23), is only strictly valid for an
unconstrained range of η, but the integral of

∫ 1
0 pEA(η) dη

in practice deviates negligibly from 1. The largest deviation
from 1 is at most of the order of some 10−4. The distribution
equation (22) is even a very good approximation of the Czjzek
distribution pC(η) (equation (5)) with k∞ = 1.346, α∞ =
0.930, β∞ = 3.348. The mean asymmetry parameter 〈η〉∞ and
the standard-deviation ση,∞ obtained from that approximation
are 0.609 75 and 0.2431 respectively while they are 0.609 82
and 0.242 68 for pC(η).

When ε decreases down to 0, α increases (table 2). It
becomes so large for small values of ε that it cannot be
determined properly in most cases. This is the reason why
it is not given for very small values of ε in table 2. When α

becomes very large for small enough ε and for η0 not too close
to 0 or to 1, the distribution pEA(η) reduces essentially to a
Gaussian determined by 〈η〉E and by ση,E, as described above.
The parameter α is of the order of 1 for large values of ε.

The various characteristics of the bivariate distribution
pE(Vzz, η) have been seen to converge at different ‘speeds’
towards those of the Czjzek’s model. Examples of such
bivariate distributions, obtained by Monte Carlo simulations,
are shown for η0 = 0.3 and for different values of ε in
figures 12–17. The asymmetry parameter distribution is close
to pC(η) for ε ≈ 1 for any η0.

Section 5 describes a simple trial and error method to find
the parameters of the extended Czjzek model and compares
some NMR spectra of glasses with the model ones.

Figure 12. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.05.

Figure 13. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.20.

5. Application to NMR spectra of glasses

The NMR lines of quadrupolar nuclei in disordered solids
often exhibit an asymmetric shape tailing towards the high-
field side [3, 30–41]. Independent Gaussian distributions of
νQ = 3|eQVzz|

2I (2I−1)
and of η are often assumed to reconstruct the

line shape in the static or in the magic angle spinning mode
(similar methods are used in EPR (see for instance [42])).
This method is convenient to obtain the relative intensity of
each contribution, but its physical basis remains to be justified
for the specific materials under investigation. Often, the
Czjzek model accounts better for the experimental spectra
than the Gaussian approximation [3, 31–33, 39, 42–45] while
being based on the two clear assumptions whose generality
was discussed previously. Their relevance can be made
plausible, or even be proven from theoretical calculations, for
the considered solids. As advocated in [3], the latter model is
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Table 2. The marginal distribution pE(η) of the extended Czjzek model is very well approximated by the distribution pEA(η) (equation (22))
for any pair of values (η0, ε). The three parameters k, α and β are tabulated below for η0 = 0.1k (k = 0, 1, . . . , 10) and for
ε = 0.05m (m = 1, 2, . . . , 22) (k∞ = 1.346, α∞ = 0.930, β∞ = 3.338).

ε k α β ε k α β ε k α β ε k α β

η0 = 0 η0 = 0.1 η0 = 0.2 η0 = 0.3
0.05 322.000 1.001 1.988 0.05 — —- — 0.05 — — — 0.05 — — —
0.10 79.868 1.006 1.971 0.10 — — — 0.10 — — — 0.10 — — —
0.15 34.827 1.013 1.939 0.15 29.620 0.995 2.103 0.15 31.089 1.269 2.820 0.15 22.689 2.405 2.867
0.20 19.381 1.024 1.895 0.20 16.725 1.013 1.953 0.20 14.422 1.043 2.400 0.20 12.085 1.481 2.774
0.25 12.421 1.037 1.843 0.25 11.147 1.030 1.870 0.25 9.073 1.015 2.108 0.25 7.397 1.166 2.494
0.30 8.763 1.049 1.789 0.30 8.089 1.046 1.800 0.30 6.680 1.036 1.913 0.30 5.309 1.084 2.179
0.35 6.632 1.076 1.712 0.35 6.255 1.076 1.714 0.35 5.342 1.064 1.780 0.35 4.287 1.060 1.977
0.40 5.319 1.098 1.643 0.40 5.086 1.096 1.648 0.40 4.470 1.079 1.700 0.40 3.660 1.053 1.856
0.45 4.431 1.102 1.604 0.45 4.269 1.097 1.614 0.45 3.830 1.079 1.661 0.45 3.209 1.048 1.789
0.50 3.783 1.094 1.594 0.50 3.665 1.089 1.606 0.50 3.336 1.070 1.652 0.50 2.852 1.040 1.765
0.55 3.274 1.076 1.612 0.55 3.186 1.071 1.624 0.55 2.932 1.054 1.671 0.55 2.550 1.026 1.784
0.60 2.870 1.056 1.647 0.60 2.802 1.051 1.662 0.60 2.601 1.036 1.716 0.60 2.290 1.006 1.843
0.65 2.550 1.037 1.704 0.65 2.496 1.033 1.721 0.65 2.334 1.018 1.783 0.65 2.087 0.993 1.916
0.70 2.277 1.013 1.793 0.70 2.224 1.005 1.825 0.70 2.088 0.988 1.908 0.70 1.893 0.966 2.063
0.75 2.053 0.989 1.909 0.75 2.014 0.984 1.941 0.75 1.912 0.971 2.026 0.75 1.766 0.956 2.180
0.80 1.882 0.970 2.041 0.80 1.854 0.966 2.070 0.80 1.776 0.957 2.159 0.80 1.664 0.945 2.318
0.85 1.749 0.953 2.186 0.85 1.730 0.951 2.210 0.85 1.671 0.945 2.294 0.85 1.587 0.937 2.447
0.90 1.656 0.945 2.316 0.90 1.644 0.946 2.331 0.90 1.601 0.942 2.407 0.90 1.537 0.936 2.550
0.95 1.586 0.939 2.432 0.95 1.575 0.939 2.454 0.95 1.545 0.938 2.520 0.95 1.497 0.935 2.648
1.00 1.525 0.932 2.589 1.00 1.516 0.931 2.616 1.00 1.489 0.928 2.696 1.00 1.452 0.926 2.817
1.05 1.494 0.933 2.658 1.05 1.485 0.932 2.689 1.05 1.462 0.929 2.770 1.05 1.432 0.927 2.887
1.10 1.459 0.929 2.786 1.10 1.452 0.928 2.812 1.10 1.437 0.927 2.874 1.10 1.416 0.928 2.962

η0 = 0.4 η0 = 0.5 η0 = 0.6 η0 = 0.7
0.05 — — — 0.05 — — — 0.05 — — — 0.05 — — —
0.10 — — — 0.10 — — — 0.10 28.740 20.408 2.352 0.10 28.586 28.412 2.125
0.15 17.019 4.132 2.711 0.15 31.904 14.160 2.532 0.15 12.904 9.215 2.334 0.15 12.545 12.495 2.157
0.20 9.425 2.408 2.695 0.20 14.138 6.362 2.542 0.20 7.258 5.218 2.340 0.20 6.375 6.514 2.376
0.25 5.954 1.659 2.582 0.25 7.983 3.711 2.489 0.25 4.407 3.189 2.522 0.25 3.585 3.813 2.788
0.30 4.250 1.304 2.422 0.30 5.083 2.414 2.495 0.30 2.874 2.104 2.850 0.30 2.248 2.488 3.499
0.35 3.359 1.128 2.286 0.35 3.497 1.679 2.599 0.35 2.059 1.526 3.272 0.35 1.626 1.816 4.535
0.40 2.853 1.052 2.157 0.40 2.631 1.292 2.678 0.40 1.651 1.234 3.653 0.40 1.352 1.467 5.542
0.45 2.531 1.021 2.061 0.45 2.168 1.107 2.668 0.45 1.451 1.087 3.910 0.45 1.227 1.265 6.190
0.50 2.289 1.002 2.020 0.50 1.911 1.022 2.615 0.50 1.360 1.012 3.984 0.50 1.174 1.138 6.362
0.55 2.091 0.987 2.033 0.55 1.753 0.979 2.583 0.55 1.321 0.974 3.950 0.55 1.161 1.060 6.075
0.60 1.920 0.970 2.103 0.60 1.644 0.955 2.599 0.60 1.310 0.955 3.821 0.60 1.166 1.008 5.658
0.65 1.790 0.960 2.188 0.65 1.566 0.942 2.651 0.65 1.308 0.943 3.746 0.65 1.185 0.979 5.190
0.70 1.672 0.943 2.340 0.70 1.512 0.936 2.721 0.70 1.314 0.939 3.629 0.70 1.213 0.965 4.667
0.75 1.600 0.940 2.439 0.75 1.467 0.930 2.832 0.75 1.324 0.939 3.517 0.75 1.236 0.953 4.350
0.80 1.538 0.934 2.576 0.80 1.445 0.933 2.874 0.80 1.327 0.937 3.475 0.80 1.260 0.949 4.039
0.85 1.492 0.930 2.686 0.85 1.422 0.931 2.961 0.85 1.329 0.933 3.457 0.85 1.275 0.942 3.895
0.90 1.462 0.931 2.779 0.90 1.403 0.929 3.029 0.90 1.331 0.932 3.433 0.90 1.289 0.939 3.761
0.95 1.439 0.932 2.850 0.95 1.390 0.928 3.088 0.95 1.335 0.933 3.400 0.95 1.298 0.936 3.685
1.00 1.410 0.926 2.986 1.00 1.383 0.930 3.114 1.00 1.332 0.929 3.426 1.00 1.305 0.933 3.614
1.05 1.399 0.927 3.028 1.05 1.368 0.926 3.202 1.05 1.337 0.930 3.379 1.05 1.315 0.933 3.549
1.10 1.390 0.929 3.084 1.10 1.366 0.928 3.198 1.10 1.341 0.932 3.370 1.10 1.323 0.934 3.497

(or might be) useful to reconstruct properly most of individual
lines of 7Li, 23Na, 27Al, 71Ga, or of other quadrupolar nuclei,
in glasses, especially glasses in which chemical bonds are
dominated by ionic interactions, typically oxide and halide
glasses. Indeed, ionic bonding is generally associated with
higher coordination numbers around the quadrupolar probe
with a somewhat more isotropic local arrangement than in
covalent materials. D’Espinose de Lacaillerie et al review the
applications of the Czjzek distribution to solid state NMR [3].
Figure 18 shows the example of a 71Ga spectrum recorded
in static mode in a fluoride glass from the pseudo-ternary
system PbF2–ZnF2–GaF3 with its reconstruction from a Czjzek
distribution [31].

Solid state NMR has been recently applied to the
characterization of chalcogenide glasses, namely glasses based
on sulfur, selenium or tellurium, for optical applications.
Significant structural information was obtained using 77Se
as a probe in Asx Se1−x , GexSe1−x , Tex Se1−x binary
glasses [46–49]. Generally speaking, chalcogenide glasses
are constituted of elements which are very close to each
other in the right part of the periodic chart. The chalcogen
atoms are most often associated with germanium, arsenic,
antimony, gallium, to name a few. When compared to the
structures of oxide glasses, or to those of fluoride glasses, their
structural networks are dominated by covalent and directional
bonds with low coordination numbers (from 2 to 4) [50, 51].
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Table 2. (Continued.)

ε k α β ε k α β ε k α β

η0 = 0.8 η0 = 0.9 η0 = 1.0
0.05 — — — 0.05 — — — 0.05 — — —
0.10 25.921 34.130 2.115 0.10 13.744 29.682 4.314 0.10 5.344 24.987 7.117
0.15 9.765 13.722 2.379 0.15 4.512 13.946 4.331 0.15 3.906 13.591 5.898
0.20 4.606 7.009 2.900 0.20 2.062 7.203 5.045 0.20 2.746 8.109 6.024
0.25 2.542 4.173 3.898 0.25 2.855 4.812 5.961 0.25 2.112 5.376 6.337
0.30 1.764 2.904 5.207 0.30 2.061 3.496 6.663 0.30 1.720 3.812 6.856
0.35 1.436 2.226 6.416 0.35 1.678 2.660 7.352 0.35 1.476 2.853 7.427
0.40 1.273 1.803 7.352 0.40 1.443 2.107 7.964 0.40 1.319 2.230 7.976
0.45 1.181 1.514 7.954 0.45 1.297 1.723 8.472 0.45 1.213 1.804 8.458
0.50 1.134 1.316 7.997 0.50 1.199 1.459 8.546 0.50 1.146 1.509 8.677
0.55 1.115 1.180 7.642 0.55 1.141 1.273 8.348 0.55 1.110 1.305 8.582
0.60 1.112 1.084 7.158 0.60 1.110 1.145 7.912 0.60 1.098 1.168 8.071
0.65 1.127 1.025 6.489 0.65 1.099 1.066 7.115 0.65 1.107 1.082 7.218
0.70 1.156 0.993 5.661 0.70 1.109 1.015 6.316 0.70 1.123 1.023 6.519
0.75 1.191 0.976 4.964 0.75 1.130 0.988 5.461 0.75 1.155 0.992 5.660
0.80 1.216 0.961 4.556 0.80 1.164 0.969 4.928 0.80 1.182 0.971 5.091
0.85 1.240 0.952 4.270 0.85 1.191 0.949 4.233 0.85 1.214 0.960 4.608
0.90 1.260 0.945 4.042 0.90 1.243 0.949 4.232 0.90 1.237 0.950 4.313
0.95 1.273 0.939 3.915 0.95 1.243 0.942 4.056 0.95 1.255 0.944 4.085
1.00 1.290 0.939 3.734 1.00 1.258 0.943 3.808 1.00 1.278 0.944 3.839
1.05 1.299 0.935 3.684 1.05 1.281 0.937 3.770 1.05 1.288 0.937 3.806
1.10 1.310 0.936 3.596 1.10 1.290 0.937 3.666 1.10 1.298 0.937 3.695

Figure 14. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.35.

Unfortunately, only very few NMR nuclei are available to
probe their structures. Besides 77Se, whose nuclear quadrupole
moment is 0, since I = 1/2, almost only the 71,69Ga isotopes
are left to perform such studies. Indeed, gallium is usually
added to some glass compositions, either for the purpose of
being substituted by rare-earth atoms for luminescence or to
act as a nucleating agent to prepare glass ceramics [52, 53]. In
that context, some 71Ga NMR spectra were collected in glasses,
for instance those of the pseudo-ternary system GeS2–Ga2S3–
CsCl. The 71Ga (spin I = 3/2) spectra were recorded at room
temperature on an Avance 300 Bruker spectrometer operating
at 91.5 MHz with a static probe. Full echoes were acquired to
improve the signal to noise ratio and to avoid any distortion of
the baseline. The pulse length, tpulse, was chosen to be much

Figure 15. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.50.

smaller than tπ/2 (tπ/2 ≈ 4tpulse) to ensure a linear irradiation
regime over the whole frequency range. Due to the strong
quadrupolar effect, Magic Angle Spinning techniques did not
permit the efficient reduction of the linewidths.

The contribution of the 71Ga NMR to the understanding of
the nucleation-growth process in these glass ceramic families
will be discussed elsewhere. Here, we focus on the original
shape of the gallium line in a 25% GeS2-75% Ga2S3 glass
(figure 19). The lineshape, which is due to the quadrupolar
effect, is clearly different from that usually observed in oxide
or fluoride glasses. Generally speaking, it is the ηQ distribution
which determines the shape of the NMR line, whereas the
spreading of νQ plays a secondary role. The extension of
the Czjzek model described in the present paper, allows us
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Figure 16. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.65.

Figure 17. Bivariate distribution pE(Vzz, η) for η0 = 0.3 and for
ε = 0.80.

to account fairly well for the observed shape (figure 19) with
η0 = 0.6, νQ = 6400 kHz and ε = 0.3 (k = 2.87, α =
2.10, β = 2.85). The spectrum was calculated with the
dmfit software [54], which has been upgraded to include the
extended Czjzek model in static mode. Further, it is worth
comparing the lineshape associated with the standard Czjzek
model to that of the extended model. The distribution of
the asymmetry parameter ηQ of the Czjzek model is rather
smooth, with a regular increase when ηQ increases from 0
to ∼0.8, followed by a small decrease for ηQ larger than
∼0.8 (figure 18), whereas those of the extended model are
clearly peaked on a given value for values of ε which are not
too large, for instance 0.6 (figure 19). The good agreement
between the reconstructed line and the experimental one is
in line with the fact that the chemical bond between gallium
and its first neighbours is covalent. Since gallium is only
four-fold coordinated, via directional covalent bonds, it seems

Figure 18. An experimental 71Ga spectrum in a fluoride ionic glass
from the pseudo-ternary system PbF2–ZnF2–GaF3 whose shape is
very well accounted for by a Czjzek line and the Czjzek distribution
of η (shown in the inset).

Figure 19. An experimental 71Ga spectrum in a chalcogenide
covalent glass, 25% GeS2 + 75%Ga2S3, whose shape is very well
accounted for by the extension of the Czjzek model for
η0 = 0.6, ε = 0.3, νQ = 6400 kHz, FWHM = 1920 kHz and the
associated distribution of η (k = 2.87, α = 2.18, β = 2.85) shown
in the inset.

reasonable to assume that some kind of local order is retained
in the glass which imposes rather well-defined local values of
η0 = ηQ0 = 0.6 and νQ(0) ≈ 6200 kHz. Nevertheless, it is a
disordered network, as reflected by the quite large value of the
ratio 
η0(≈ε = 0.3) (equation (21)) needed to account for the
broad smooth NMR line.

Finally, it is worth following the evolution of the shape
of the quadrupolar lines when 
η0 (=
) increases for different
values of η0 (figure 20, νQ(0) = 5000 kHz). As expected,
the static lines exhibit, for small 
 values, the classical
discontinuities which characterize the quadrupolar interaction
in a crystalline environment. For large values of 
, and for
any η0, the broad line corresponding to a Czjzek distribution of
quadrupolar parameters is retrieved and the local order is fully
hidden. In between, some new shapes of NMR quadrupolar
lines appear which depend both on η0 and on 
. The η0 value
points to the existence of an inherent local symmetry around
the quadrupolar nucleus, whereas the 
 (or ε) factors reveals
the degree of disorder characterizing the more remote network.

A possible method to compare experimental spectra with
those predicted by the extended model is first to determine
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Figure 20. Calculated line shapes for 71Ga for the extended Czjzek
model for the indicated values of η0 (νQ(0) = 5000 kHz) and various
values of the ratio 
 = 
η0 (ε). For 
 <∼ 0.5, ε ≈ 
 (figure 3).

ε either from experimentally determined ratios, for instance
from rη0(ε) (figure 2 or equation (20)) or from 
η0 (ε) (figure 3
or equation (21)). Then a value of η0 is selected and a
spectral shape consistent with the extended Czjzek model

is calculated and compared to the experimental one. The
asymmetry parameter η0 is varied until an eventual agreement
with experiment is found.

6. Conclusion

The Czjzek model represents a well-defined reference state for
the distributions of the EFG tensor and of the EFG vector
and consequently for the bivariate distribution of η and of
Vzz . As discussed in the present paper, it is as uniform
as it can be, without violating the constraints imposed by
statistical isotropy, because of the applicability of a central
limit theorem to the EFG vector. These two conditions
are physically realistic for a wealth of disordered solids
(ionic solids, alloys with long-range oscillatory interaction
potentials, . . .) and result in a tremendous simplification of
the derivation of the EFG distribution, but at the cost of
a loss of local structural information about the investigated
solid. It is a perfect illustration of a behaviour commonly
found in physics, as emphasized by the following passage
of [55]: ‘The statistical distribution of quantities that involves
many microscopic variables is frequently independent of the
assumptions made at the microscopic level and depends only
upon very general macroscopic properties of the problem . . ..
A central limit theorem is normally responsible for such a
behaviour.’

A simple extension of the Czjzek model was investigated
in detail. It is intended to mimic a well-defined local
environment perturbed by disorder of more remote atoms
whose effect is rendered by a Czjzek noise with an adjustable
weight ρ(ε) relative to the fixed V̄ (0). In that way, the number
of free parameters is kept at a reasonable level, three, Vzz(0),
η0, ε, as compared to a sole scale factor for the Czjzek model.
Its characteristics are described as a function of η0 and of ε

with the aim to offer a practical tool which may help to retrieve,
as far as possible, the information about the local environment
provided by hyperfine techniques and notably by NMR. For
small values of ε, the extended model exhibits situations in
which the distribution of |Vzz | and that of η are both Gaussians.
Gaussian distributions of νQ ∝ |Vzz| and of η are sometimes
used, most often empirically, to reconstruct experimental NMR
line shapes. That extension was shown to be helpful to describe
some 71Ga NMR spectra of covalent glasses. Its pertinence
in a 17O NMR theoretical and experimental study of sodium
metaphosphate glasses will be described in a forthcoming
paper [56].

The extended model might be considered as somewhat
sketchy but it can provide useful information while being
still simple. Knowing the variety of situations that can be
encountered, an obvious and difficult question is: how to go
farther? A way to make the present extended model more
realistic would be to increase the number of free parameters,
but with the risk of making it inapplicable and of leading
to a situation in which the only solution left is to perform
theoretical calculations from model structures. A first step
might, however, be to distribute the elements of the ‘fixed’ EFG
tensor on a sound physical basis.
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Appendix

A different way of looking at the EFG tensor from two vectors
in 3D space is worth describing. The method, recently applied
to the study of the cosmic microwave background, involves
multipoles with 2l+1 degrees of freedom which are irreducible
representations of the rotation group in 3D [19, 20]. As
we consider the EFG tensor, we restrict the following to the
multipole with l = 2 (2l + 1 = 5). Any real spherical function
with fixed l is represented by a set of l 3D unit vectors
u1, . . . ,ul which is called a Maxwell multipole [20]. The
elements of the EFG tensor can be constructed from these two
vectors as [19]

vi j = A

(
u1i u2 j + u1 j u2i

2
− 1

3
δi j �u1 · �u2

)

(i, j = x, y, z) (A.1)

where A is a scale factor. The eigenvectors and the eigenvalues
are then explicit expressions of u1,u2 and X = u1 · u2.
The three eigenvalues are for instance given by A(X + 3)/6,
A(X − 3)/6 and −AX/3 [19] so that � = |Vzz |

√
1 + η2/3 =

A
√

(3 + X2)/3. For a statistically isotropic solid, the vectors
u1 and u2 play similar roles. Fixing their origins at a given
point, the tip of each vector is uniformly distributed on the
surface of a 3D unit sphere, but they are correlated. The
sole knowledge of the distribution of X , q(X)(−1 � X � 1)

allows us to derive the distribution p(η) as |X | = 3(1−η)

(3+η)
.

Indeed, defining q+(X) = q(X)+q(−X)(0 � X � 1), yields

p(η) = 12

(3 + η)2
q+
(

3(1 − η)

(3 + η)

)
(0 � η � 1). (A.2)

The distribution q+(Y ) of Y = |X | is reciprocally
calculated from the distribution p(η) (equation (A.2)) by
replacing p( ) by q+( ) and conversely by replacing η by Y .
The distribution

qgi(X) = 27(1 − X2)

2(3 + X2)5/2
(A.3)

is derived for a statistically isotropic spherical function which
is a linear combination of the five spherical harmonics
Y m

2 (θ, ϕ) (m = −2, . . . , 2) with independent identically
distributed Gaussian coefficients (equation (9) of [19] and (11)
of [20]). Then the Czjek distribution pC(η) is recovered from
q+

gi(X) = 2qgi (X) by applying equation (A.2). These results
are independent of the value of the scaling A (equation (A.1)),
which may be either fixed or distributed according to some
law. Possible expressions of u1 and u2, which are useful for
Monte Carlo simulations, are for a given X = u1 ·u2:

u1

⎧
⎪⎨

⎪⎩

sin θ1 cos ϕ1

sin θ1 sin ϕ1

cos θ1

u2 = Xu1 + Zu1⊥

u1⊥ =

⎧
⎪⎨

⎪⎩

− sin ϕ1 sin ϕ2 + cos θ1 cos ϕ1 cos ϕ2

cos ϕ1 sin ϕ2 + cos θ1 sin ϕ1 cos ϕ2

− sin θ1 cos ϕ2

(A.4)

with 0 � θ1 � π, 0 � ϕ1, ϕ2 � 2π and Z = √
1 − X2.

For a statistically isotropic solid and three independent uniform
random variables ω0, ω1, ω2 on (0, 1), we obtain

cos θ1 = 2ω0 − 1, ϕk = 2πωk, k = 1, 2. (A.5)

It suffices then to select X and A according to two given
distributions q(X) and p(A) (or equivalently according to
distributions p(η) and p(�)) to obtain in that way the
distribution of the associated EFG vector and that of the EFG
tensor.
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